Papers & Publications

Humanitarian Operations:  Not a Grey Area

GODDARD, R., HORNER, D., PEDDER, S., PIPKIN, C.   13th International Naval Engineering Conference and Exhibition (INEC), 2016

Responding to natural or man-made disasters forms a key part of the Royal Navy’s (RN’s) remit, deploying its highly skilled workforce to deliver aid, provide life-saving equipment, restore infrastructure and conduct evacuations and repatriations. Currently humanitarian operations are conducted by a variety of RN vessels, drawing upon the skills and adaptability of their crew. However the vessels, which are designed primarily or exclusively for military operations, are required to operate outside of their design intent and so provide a sub-optimal humanitarian response; furthermore, conducting humanitarian operations prevents the vessels from conducting military duties and interrupts their operational programmes.

With both the overseas aid and Ministry of Defence (MOD) budgets under increasing scrutiny, it is important to ensure that both are being used in the most effective manner; can more be achieved using a different approach? The provision of dedicated Humanitarian Operation Ships (HOS) has the potential to offer a more targeted and efficient response to this core aspect of naval operations, whilst providing a range of other benefits.

This paper draws together arguments for and against the development of one or more dedicated HOS, and discusses the requirements for such a vessel type and potential operating models. The financial implications of this approach are estimated, based on the cost of recent humanitarian operations, to demonstrate that such an approach is financially viable.  Finally, a concept design for a HOS is presented in order to demonstrate how the benefits outlined above can be realised.

Link (members only)


Small Combatant Accidental Damage Extents

GODDARD, R., HORNER, D. , MARSHAL S.  14th International Ship Stability Workshop, 2014

A cost benefit analysis has been conducted to understand how the extent of transverse watertight subdivision as a result of accidental damage extent requirements drives vessel cost, and where the balance lies between cost of increasing survivability and cost of vessel loss. The results of this investigation suggest that a 15% accidental damage extent is appropriate for a small naval combatant.

A great deal of work has been conducted in recent years concerning the derivation of appropriate accidental damage extents for naval vessels; this work has focussed predominantly on extents determined as a percentage of vessel length. Traditionally however, small vessels less than 90 metres in length have struggled to comply with such a standard and have consequentially been certificated against an extent based on number of compartments.

This paper explores the impact on small combatant design of moving from a two compartment damage requirement to a 15% length damage extent through a series of design explorations on four current small combatants. The implication of a 15% extent is examined with regard to the respective changes in ship size and watertight definition required to achieve compliance, and corresponding conclusions are presented.

A cost benefit analysis has been conducted to understand how the extent of transverse watertight subdivision as a result of accidental damage extent requirements drives vessel cost, and where the balance lies between cost of increasing survivability and cost of vessel loss. The results of this investigation suggest that a 15% accidental damage extent is appropriate for a small naval combatant.

A great deal of work has been conducted in recent years concerning the derivation of appropriate accidental damage extents for naval vessels; this work has focussed predominantly on extents determined as a percentage of vessel length. Traditionally however, small vessels less than 90 metres in length have struggled to comply with such a standard and have consequentially been certificated against an extent based on number of compartments.

This paper explores the impact on small combatant design of moving from a two compartment damage requirement to a 15% length damage extent through a series of design explorations on four current small combatants. The implication of a 15% extent is examined with regard to the respective changes in ship size and watertight definition required to achieve compliance, and corresponding conclusions are presented.

Link (members only)


A New Approach to the Derivation of V-Line Criteria for a Range of Naval Vessels

GODDARD, R. DAWSON, N., PETERS, A.  14th International Ship Stability Workshop, 2014

Previous work has gone some way to understanding the applicability of the current naval V-lines standards to modern day naval designs by carrying out damaged vessel simulations using the CRN developed time-domain ship motion program FREDYN. The work presented in this paper seeks to further this understanding of V-lines by analysing the damaged motions of six vessel types, varying from a small Mine Counter Measure Vessel (MCMV) to a large auxiliary, and implementing a new methodology for the calculation of probabilistically derived dynamic motion allowances for heave and roll. Furthermore, analysis has been conducted in sea states up to a sea state 6 in order to understand the applicability of V-line criteria at greater wave heights and periods. This paper compares heave and roll allowances derived from the probability of exceeding water heights on the bulkheads bounding the damage in varying sea states for each vessel type, each with two damage cases at eight wave headings and at two speeds. Conclusions are drawn regarding the suitability of current criteria for vessels of varying size and design and their sensitivity to sea state.

Link


UXV-Enabled Totally Modular Combatant

GODDARD, R., SKARDA, R.  12th International Naval Engineering Conference and Exhibition, 2014

The growing capability of unmanned vehicles requires the hosting combatant to be designed in a different way.   To keep up with the pace of Unmanned Vehicle UXV design and fielding requirements, the ship must be adaptable, modular and a flexible balance must be achieved between on-board and off-board capability in order to maintain an acceptable overall system cost. Operational Doctrine and Concepts must be entwined with the overall system design, where the system includes; people, platform, combat systems, network and unmanned systems. A totally modular approach to design, construction, fitting out, systems deployment and re-configuration enables the platform and the role to be independent. Integrated propulsion systems to enable future energy weapons to be deployed must be balanced with procurement costs and through life costs as well as maintaining simplicity in the platform yet allowing freedom of manoeuvre through good speed and long range.  Combined Engagement Capability, Open Combat Systems Architecture and the ability to cross-deck unmanned systems should allow a more cost effective and smaller vessel to provide the capability edge, where additional survivability comes from the task group network of supporting combatants and fleet of unmanned vehicles. The Steller Systems ‘Hermes’ concept shows one way that this balance can be achieved and the advantages to the operator and coalitions through making capability, platform agnostic.  The form factor of a small frigate provides the required balance between size and capability, cost and performance.  Through modular design, arrangements to support a multitude of unmanned vehicles and an efficient hybrid electric propulsion architecture, will show how the future of combatant design will be a trade between organic integrated systems, unmanned systems, open combat systems architecture, platform arrangement, platform numbers, personnel training and propulsion systems architecture.

Please contact us for a copy of the paper.


For more technical papers, please see our staff members’ LinkedIn profiles.


Background image: © Crown Copyright 2017